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Abstract. In this document, Bayes’ Rule is used to find the probability of a
proposition in light of multiple testimonies that may conflict with each other
or corroborate each other, with the constraint that the testimonies are inde-
pendent of one another and each attest to one of a set of mutually exclusive
alternatives. The probability of the proposition is shown to be a function of
the prior probabilities of the alternatives and the probability that the witnesses
would claim what they have claimed given each of the alternatives. For cases
where the probability of the witness telling the truth is known and the wit-
ness’ truthfulness is independent of claims, theorems are stated which allow
the probability of a witness telling the truth to be substituted for the probabil-
ity that the witness would claim what they have claimed given an alternative.
The theorems stated are used to solve some example problems, including a
problem stated by Augustus de Morgan in Formal Logic.

1. Introduction

There are many factors that complicate the use of testimony to estimate the
probability of a proposition. Testimonies may corroborate or contradict each other.
One witness may be more or less likely to tell the truth than another. Witnesses
may be biased for or against making certain claims. The claims may be more or
less likely a priori. Estimating probability in light of ths kind of evidence may not
always be feasible, but if the testimony is independent and it is limited to a set of
mutually exclusive alternatives, there is a formula that can take all of these things
into account.

The discussion proceeds as follows: The problem is stated. The basic solution
and a corollary are given; both relate the probability of a proposition to the proba-
bilities of witnesses making certain claims and the prior probabilities of the things
that are claimed. To extend the solution’s applicability, some additional theorems
are stated that relate the probabilities of a witness making claims to the probability
that the witness would tell the truth. To illustrate how these formulas and theorems
might be used, example problems are presented and solved. In case it is helpful,
some notation is explained and axioms, a lemma and a definition are stated. At the
end of the discussion, theorems stated and assertions made during the discussion,
which require proof, are proven from standard axioms and definitions.
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2 PROBABILITY IN LIGHT OF INDEPENDENT TESTIMONY...

2. Stating the Problem

Let A be a set of alternative possibilities. Let W be a set of witnesses that have
each attested to exactly one of the alternatives in A. Let q be one of the alternatives
in A. Let c be a predicate on two variables such that “caw” asserts “witness w claims
that alternative a is true”. Let T be a function that maps each witness in W to the
alternative in A to which the witness attested. Then the probability of q given the
testimony of W is

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)
,

which may be read as “the probability of q given the fact that the witnesses in
W claim what they have claimed”. This is the quantity that is being sought.
This quantity should be deduced from these quantities, which might be known or
estimated:

� The prior probabilities of the alternatives that the witnesses might have
attested to

� The probabilities that witnesses would make their claims, given each of the
alternatives

� The probability that each witness would tell the truth

The problem is limited to situations which meet all of these conditions:

1. The claims are constrained to a set of alternatives that are mutually exclu-
sive of one another.

2. The alternatives cover all possibilities.
3. None of the alternatives are known a priori to be false.
4. The witnesses’ claims are conditionally independent of one another given

each of the alternatives they might have claimed.

Note that the claims are to be conditionally independent. In general, it would not
be expected or desirable for the claims to be unconditionally independent. If two
witnesses are inclined to tell the truth, then if one makes a certain claim, it raises
the probability that the claim is true, which in turn raises the probability that the
other witness makes the same claim. Conditional independence means one witness’s
claim may be influenced by many things (hopefully including reality and a will to
tell the truth), but not by the other witnesses’ claims.

3. The Basic Solution and a Corollary

Under the conditions stated above, the basic solution is a formula that can
be derived from Bayes’ Rule, the Law of Total Probability and the definition of
conditional independence. It has already been stated and proven by Hu and Qu as
Theorem 4 in “Bayes’ Theorem under Conditional Indepenence”[1].

Theorem 1 (Hu and Qu’s Theorem 4). If the alternatives in A are mutually
exclusive and cover all possibilities, and none are known a priori to be false, and
all the claims of W are all conditionally independent of one another given any of
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these alternatives, then

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)
=

Pr (q)
∏
w∈W

Pr
(
cT (w)
w

∣∣q)∑
a∈A

Pr (a)
∏
w∈W

Pr
(
cT (w)
w

∣∣a) .

A corollary that relates the probability of one alternative to another given the
claims of witnesses follows straightforwardly from Theorem 1:

Corollary 1. If the alternatives in A are mutually exclusive and cover all possi-
bilities, and none are known a priori to be false, and all the claims of W are all
conditionally independent of one another given any of these alternatives, then the
ratio of the probabilities for any two alternatives q and r in A given the claims of
W is

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
r

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =

Pr (q)
∏
w∈W

Pr
(
cT (w)
w

∣∣q)
Pr (r)

∏
w∈W

Pr
(
cT (w)
w

∣∣r) .

4. Equivalences

Let t be a predicate on one variable such that “tw” asserts “witness w is telling
the truth”. If so, then the predicates c and t are related logically. For instance, if
acaw, then tw (if alternative a is true and w claims a, then w is telling the truth).
The theorems in this section state some of these relations. Both theorems follow
straightforwardly from what has been postulated about c and t.

Theorem 2. These equivalences are true for all propositions a and b and any
witness w who has attested to a or b:

acawtw ≡ acaw , (E1)
acawtw ≡ atw , (E2)
acawtw ≡ cawtw , (E3)
ācaw t̄w ≡ ācaw , (E4)
ācaw t̄w ≡ caw t̄w , (E5)
ac̄aw t̄w ≡ ac̄aw , (E6)
ac̄aw t̄w ≡ at̄w , and (E7)
acbw t̄w ≡ acbw if a → b̄ . (E8)

Additional equivalences are true in circumstances where there are exactly two
alternatives that a witness may attest to, e.g., “The accused committed the crime”
and “the accused did not commit the crime”.
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Theorem 3. If A is a set of alternatives, a is a member of A and w is a witness
that has attested to one of the alternatives in A, then these equivalences are all true:

āc̄awtw ≡ āc̄aw if |A| = 2 , (E9)
āc̄awtw ≡ ātw if |A| = 2 , (E10)
āc̄awtw ≡ c̄awtw if |A| = 2 , (E11)
ac̄aw t̄w ≡ c̄aw t̄w if |A| = 2 , (E12)
ācaw t̄w ≡ āt̄w if |A| = 2 , (E13)

c̄aw ≡ cāw if |A| = 2 , and (E14)
c̄āw ≡ caw if |A| = 2 . (E15)

5. Some Substitutes for Pr
(
cT (w)
w

∣∣a)
The theorems in this section are true for all a in A and all w in W where A is

a set of alternatives and W is a set of witnesses who have each attested to one of
the alternatives in A. These theorems identify substitutes for Pr

(
cT (w)
w

∣∣a), which
appears in Theorem 1 and Corollary 1.

Theorem 4. The probability of a witness claiming an alternative when that alter-
native is true is equal to the probability of the witness telling the truth;

Pr (caw|a) = Pr (tw|a) .

Theorem 5. If a witness’s truthfulness is independent of an alternative, then the
probability of the witness claiming that alternative when the alternative is true is
equal to the prior probability of the witness telling the truth;

Pr (caw|a) = Pr (tw) if a ⊥⊥ tw .

Theorem 6. Given an alternative, if a witness, when not telling the truth, claims
another alternative in proportion to its prior probability, then if the witness’s truth-
fulness is independent of the given alternative being true, the probability that the
witness claims the other alternative is equal to the product of the witness not telling
the truth and the proportion of the prior probability of the other alternative to the
prior probabilities of all of the alternatives that are not the given alternative;

Pr
(
cbw
∣∣a) = Pr (t̄w) Pr (b)

Pr (ā)
if a ⊥⊥ t̄w and Pr

(
cbw
∣∣at̄w) = Pr (b)

Pr (ā)
and b → ā .

Theorem 6 applies to situations where a witness does not exhibit bias for or
against the alternative that they falsely claimed; the claim was made as if it was
the result of a random selection among the false alternatives.

Theorem 7. If there are only two alternatives and a witness’s truthfulness is
independent of them, then the probability of a witness claiming the false alternative
is equal to the probability of the witness not telling the truth;

Pr (caw|ā) = Pr (t̄w) if |A| = 2 and a ⊥⊥ tw .

6. Example Problems

Example 1 (Dishonest accusations). Alice, Bob and Dan attempt to rob a jewelry
store. The only other person present is a clerk, whom one of them threatens with
a pistol. Things do not go well and the clerk is shot dead. Alice, Bob and Dan
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are the only living witnesses to the event. There is no physical evidence to indicate
which of them is the shooter. The police apprehend the three and interrogate each
of them separately. During the interrogations, each makes an accusation. None
of the suspects are willing to go to jail and none are loyal to any of the others.
The suspects did not have time to confer beforehand and no plea bargains were
offered in such a way as to motivate a false confession. Because of all this, they are
expected to testify as follows: The guilty one will almost certainly not confess and
will instead accuse one of the others, with equal probability of accusing either. The
others, who have no known motive to protect the guilty one, will almost certainly
accuse the guilty one. Let mx be a predicate of one variable that asserts that x is
the murderer. Let W = {Alice,Bob,Dan}, a ≡ mAlice, b ≡ mBob, d ≡ mDan and
A = {a, b, d}. Let s in the following equations represent small positive numbers
that are not necessarily equal to one another. Under these circumstances, the
probabilities Pr

(
cT (w)
w

∣∣mx

)
for x and w in W are as follows:

If a witness is not the murderer, the probability that he or she accuses the
murderer is high;

Pr
(
cT (w)
w

∣∣mx

)
= 1− s if x 6= w and mx ≡ T (w) . (1)

If a witness is not the murderer, the probability that he or she makes a false
accusation is low and it is divided evenly amongst the suspects who are not the
murderer;

Pr
(
cT (w)
w

∣∣mx

)
=

s

|A| − 1
if x 6= w and mx 6≡ T (w) . (2)

If a witness is the murderer, the probability that he or she confesses (and there-
fore accuses the murderer) is low;

Pr
(
cT (w)
w

∣∣mx

)
= s if x = w and mx ≡ T (w) . (3)

If a witness is the murderer, the probability that he or she makes a false accu-
sation is high and it is divided evenly amongst the other suspects;

Pr
(
cT (w)
w

∣∣mx

)
=

1− s

|A| − 1
if x = w and mx 6≡ T (w) . (4)

If, prior to the accusations, the probabilities that one suspect or another com-
mitted the murder are all equal, then the approximate probability of any one of the
three being the murderer can be calculated from Theorem 1. In most circumstances
such as this, no suspect confesses and two of the suspects accuse the same person;
there is corroboration between two of the witnesses and it is almost certain that
the suspect whom they accuse is the murderer. In the other cases, the probability
of a suspect being the murderer is not so obvious. In the case where one suspect
confesses and the other two accuse each other, one might think that the suspect
who confessed is the murderer, because people usually do not confess to crimes
that they did not commit, and the other two witnesses’ accusations cancel each
other out. But actually, the one who confessed is probably not the murderer. Sup-
pose Alice confesses, Bob accuses Dan, and Dan accuses Bob. Given these claims
and Corollary 1, the ratio of the probability of Alice being the murderer to the
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probability of Bob being the murderer is

Pr

(
a

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
b

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =
Pr (a) Pr (caAlice|a) Pr

(
cdBob

∣∣a)Pr (cbDan

∣∣a)
Pr (b) Pr (caAlice|b) Pr

(
cdBob

∣∣b)Pr (cbDan

∣∣b) . (5)

Making the assumption that Pr (a) and Pr (b) are equal and using (1), (2), (3) and
(4) to find appropriate substitions for the other terms in (5) yields

Pr

(
a

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
b

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =

s1
s2

|A| − 1
· s3
|A| − 1

s4
|A| − 1

· 1− s5
|A| − 1

(1− s6)
=

s1s2s3
s4 (1− s5) (1− s6)

.

As can be seen, the probability that Alice is the murderer given these accusations
is the product of three small numbers, but the probability that Bob is the murderer
given these accusations is the product of one small number and two instances of
one minus a small number. Unless some of these small numbers differ by many
orders of magnitude, the probability that Alice is the murderer is much smaller
than the probability that Bob is the murderer. By the same line of reasoning, the
ratio of the probability of Alice being the murderer to Dan being the murderer is
also small. Therefore, although Alice confessed, she is probably not the murderer.
This can be explained by noting that if Alice is the murderer, three unlikely events
have occurred, but if Bob or Dan is the murderer, then only one unlikely event has
occurred.

Example 2 (Unreliable but unbiased witnesses to a roll of a fair die). Suppose
someone rolls a fair, six-sided die. There is a witness and this witness is very
unreliable; he misreports half of the rolls that he witnesses. However, he is unbiased
in the sense that he is not more likely to be wrong about one number than another
and, when he is wrong, he does not choose one number more often than another.
He says that a six was rolled. How does his testimony affect the probability that
a six was rolled? Is the posterior probability the same because what he says is
as often as not false? What if another, similarly unbiased but even less reliable
witness, who mispreports two thirds of the rolls he witnesses, says it is a six? Does
his testimony decrease the probability that a six was rolled because he is more often
than not wrong?

To answer these questions, start with Theorem 1. In this scenario, A is the set of
possible rolls, one through six, q is the event that a six was rolled and W are the two
unreliable witnesses. Since each roll is equally probable, the priors in Theorem 1
cancel out. Since the witnesses are no more or less likely to tell the truth when a
six is rolled, Theorem 5 allows the terms that represent the probability that they
would claim a six when a six was rolled to be replaced with Pr (tw). Since neither
of the witnesses are biased, Theorem 6 can be applied to the terms that represent
the probability that they would claim a six when a number other than a six was
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rolled. The result of these substitutions is

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

∏
w∈W

Pr (tw)

∏
w∈W

Pr (tw) +
∑

a∈A\{q}

∏
w∈W

Pr (t̄w) Pr (a)

Pr (q̄)

. (6)

Since the prior probabilities of all rolls are equal, this can be simplified to be

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

∏
w∈W

Pr (tw)∏
w∈W

Pr (tw) + (|A| − 1)
1−|W |

∏
w∈W

Pr (t̄w)
. (7)

Considering only the testimony of the first witness, the probability that a six was
rolled is 1

2
;

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

1

2
1

2
+ (6− 1)

1−1

(
1− 1

2

) =
1

2
.

The first witness’s testimony increases the probability that a six was rolled because,
though he does not tell the truth more often than not, he is not biased and his
assertions are true more often than a random guess. If the testimony of both
witnesses is taken into account, the probability is 5

7
;

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

1

2
· 1
3

1

2
· 1
3
+ (6− 1)

2−1

(
1− 1

2

)(
1− 1

3

) =
5

7
.

The second witness’s testimony, though less reliable than that of the first witness,
is still better than a random guess, so it raises the probability of a six even further.
The corroboration of the two witnesses raises the probability into the range of
more-likely-than-not.

Example 3 (Independent testimony, according to de Morgan). In chapter X of
Formal Logic, titled “On Probable Inference”[2], Augustus de Morgan discusses
several problems having to do with “independent testimonies to the truth of an
assertion”. For the first problem, he presents some formulae as solutions for certain
circumstances. The first formula is a solution to circumstances where there are
several independent witnesses for a single assertion and the probability of each
telling the truth is known. He accounts for the prior probability of the assertion by
including, in his words, “the initial testimony of the mind itself which is to form
the judgement” as one of the testimonies. The formula, expressed in the notation
of the present discussion, is

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

Pr (q)
∏
w∈W

Pr (tw)

Pr (q)
∏
w∈W

Pr (tw) + Pr (q̄)
∏
w∈W

Pr (t̄w)
. (8)

He apparently intends the testimonies to be independent in the sense that the
probabilities of each being true are independent of one another. Also, because the



8 PROBABILITY IN LIGHT OF INDEPENDENT TESTIMONY...

prior estimate of probability counts as testimony, the probability of each testimony
being true is independent of the prior probability of the assertion. In symbolic
form, this independence is∧

w∈W

∧
x∈W

tw ⊥⊥ tx and
∧

w∈W

q ⊥⊥ tw , (9)

from which the formula can be derived straightforwardly. Interestingly, the same
formula can be derived from Theorem 1 if the testimonies are independent in a
different sense, where the witnesses are conditionally independent of one another
given each possible alternative, and the witnesses are unbiased in the sense that
the probability of each witnesses telling the truth is independent of the probability
of the assertion. In symbolic form, this is∧

a∈A

(∏
w∈W

Pr (caw|a) = Pr

( ∧
w∈W

cT (w)
w

∣∣∣∣∣a
))

and
∧

w∈W

q ⊥⊥ tw . (10)

The formula follows from both pairs of assumptions even though they are not
equivalent – (9) does not entail (10) and (10) does not entail (9).

The second formula is an equation of two ratios, expressed as an analogy, that
applies to cases where threre is independent testimony for and against an assertion
and the credibility of all witnesses are equal. The formula, expressed in the notation
of the present discussion, with m being the number of testimonies in favor of an
assertion q and n being the number of testimonies against q, is

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
q̄

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =
Pr (tw)

m
(1− Pr (tw))

n

Pr (tw)
n
(1− Pr (tw))

m =
Pr (tw)

m−n

(1− Pr (tw))
m−n . (11)

As with (8), de Morgan inferred it from (9). He did not, however, consider the
prior probability of the assertion. By omitting it from the formula, he effectively
assumed that Pr (q) = Pr (q̄). Equation (11) can also be derived from Corollary 1
if (10) is assumed and Pr (q) = Pr (q̄).

7. Notation, Axioms and a Definition

(There is nothing novel in this section; it is included to make the intended
meanings of symbols and terms explicit and to show that this discussion is grounded
in modern probability theory).

Throughout this discussion, an expression of the form “pq”, where p and q are
Boolean expressions, signifies a logical conjunction of the two, i.e. “p AND q”. A
line over a symbol denotes negation, e.g. “c̄aw” asserts “witness w did not claim a”.
An expression of the form “

∧
p∈P

φ” asserts that the expression φ is true for each
member of P . An expression of the form “

∨
p∈P φ” asserts that the expression φ is

true for some member of P . An expression of the form “p ⊥⊥ q” asserts that the
probabilities of p and q are independent. An expression of the form “

∏
x∈X

f(x)”
denotes the result of applying function f to each member of X and multiplying
the results together. An expression of the form “

∑
x∈X

f(x)” denotes the result of
applying function f to each member of X and adding the results together.
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The Kolmogorov Axioms, stated in terms of a set of mutually exclusive propo-
sitions P such that

∨
p∈P p, are

Pr (p) ≥ 0 if p ∈ P , (K1)

Pr

(∨
p∈P

p

)
= 1 , and (K2)

Pr

(∨
p∈S

p

)
=
∑
p∈S

Pr (p) if S ⊆ P . (K3)

This consequence of (K2) and (K3) is useful for combining probability with logic:

Pr (p) = Pr (q) if p ≡ q . (K4)

It will be invoked several times in the following proofs.

Definition 1 (Conditional independence). Propositions p and q are conditionally
independent given proposition r if and only if

Pr (pq|r) = Pr (p|r) Pr (q|r) .

8. Proofs

Proof of (K4).

p ∨ p̄ by excluded middle. (12)
Pr (p ∨ p̄) = 1 by (K2), (12). (13)

Pr (p) + Pr (p̄) = 1 by (K3), (13). (14)

Suppose q ≡ p. Then

q ∨ p̄ by hypothesis, (12), substitution. (15)
Pr (q ∨ p̄) = 1 by (K2), (15). (16)

Pr (q) + Pr (p̄) = 1 by (K3), (16). (17)
Pr (p) + Pr (p̄) = Pr (q) + Pr (p̄) by (14), (17), transitivity. (18)

Pr (p) = Pr (q) by (18), cancelling out.

Therefore

Pr (p) = Pr (q) if p ≡ q .

�

Proof of Theorem 1. Consider the probability of an alternative q that is in A. Ac-
cording to Bayes’ Rule,

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)
=

Pr (q) Pr

( ∧
w∈W

cT (w)
w

∣∣∣∣∣q
)

Pr

( ∧
w∈W

cT (w)
w

) . (19)
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Applying the Law of Total Probability to the denominator on the right-hand side
of (19) yields

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)
=

Pr (q) Pr

( ∧
w∈W

cT (w)
w

∣∣∣∣∣q
)

∑
a∈A

Pr (a) Pr

( ∧
w∈W

cT (w)
w

∣∣∣∣∣a
) . (20)

Since the claims made by members of W are independent given any of the al-
ternatives in A, Theorem 1 follows from (20) and the definition of conditional
independence:

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)
=

Pr (q)
∏
w∈W

Pr
(
cT (w)
w

∣∣q)∑
a∈A

Pr (a)
∏
w∈W

Pr
(
cT (w)
w

∣∣a) .

�

Proof of Theorem 4.

Pr (caw|a) =
Pr (acaw)

Pr (a)
by conditional probability. (21)

Pr (acaw)

Pr (a)
=

Pr (atw)

Pr (a)
by (E1), (E2), (K4). (22)

Pr (atw)

Pr (a)
= Pr (tw|a) by conditional probability. (23)

By equations (21), (22), (23) and the transitive property of equality,

Pr (caw|a) = Pr (tw|a) .

�

Proof of Theorem 5. Suppose a ⊥⊥ tw. Then

Pr (tw|a) = Pr (tw) by hypothesis. (24)
Pr (caw|a) = Pr (tw) by Theorem 4, (24), transitivity.

Therefore

Pr (caw|a) = Pr (tw) if a ⊥⊥ tw .

�



PROBABILITY IN LIGHT OF INDEPENDENT TESTIMONY... 11

Proof of Theorem 6. Suppose a ⊥⊥ t̄w and Pr (cbw|at̄w) =
Pr(b)

Pr(ā)
and b → ā. Then

Pr (b)

Pr (ā)
= Pr

(
cbw
∣∣at̄w) by hypothesis. (25)

=
Pr
(
acbw t̄w

)
Pr (at̄w)

by conditional probability. (26)

=
Pr
(
acbw
)

Pr (at̄w)
by (E8), hypothesis, modus tollens. (27)

=
Pr
(
acbw
)

Pr (a) Pr (t̄w)
by hypothesis, independence. (28)

=
Pr
(
cbw
∣∣a)

Pr (t̄w)
by conditional probability. (29)

Pr (b)

Pr (ā)
=

Pr
(
cbw
∣∣a)

Pr (t̄w)
by (25), (26), (27), (28), (29), transitivity. (30)

Pr (t̄w) Pr (b)

Pr (ā)
= Pr

(
cbw
∣∣a) by (30), algebra.

Therefore

Pr
(
cbw
∣∣a) = Pr (t̄w) Pr (b)

Pr (ā)
if a ⊥⊥ t̄w and Pr

(
cbw
∣∣at̄w) = Pr (b)

Pr (ā)
and b → ā .

�

Proof of Theorem 7. Suppose |A| = 2 and a ⊥⊥ tw. Then

ā ⊥⊥ t̄w by hypothesis. (31)
Pr (ācaw) = Pr (āt̄w) by (E4), hypothesis, (E13), (K4). (32)
Pr (ācaw) = Pr (ā) Pr (t̄w) by (31), (32). (33)
Pr (ācaw)

Pr (ā)
= Pr (t̄w) by (33), algebra. (34)

Pr (caw|ā) = Pr (t̄w) by (34), definition of conditional probability.

Therefore

Pr (caw|ā) = Pr (t̄w) if |A| = 2 and a ⊥⊥ tw .

�

Proof that (7) follows from (6) in Example 2. Consider this subexpression of (6):∑
a∈A\{q}

∏
w∈W

Pr (t̄w) Pr (a)

Pr (q̄)
.

Since a and q in this subexpression are rolls of a die and the prior probabilities of
all rolls are equal, this is true:∑

a∈A\{q}

∏
w∈W

Pr (t̄w) Pr (a)

Pr (q̄)
=

∑
a∈A\{q}

Pr (q)
|W |

Pr (q̄)
|W |

∏
w∈W

Pr (t̄w) . (35)
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Since the content of the summation on the right-hand side of (35) is the same for
any value of a,∑

a∈A\{q}

Pr (q)
|W |

Pr (q̄)
|W |

∏
w∈W

Pr (t̄w) = (|A| − 1)
Pr (q)

|W |

Pr (q̄)
|W |

∏
w∈W

Pr (t̄w) . (36)

Since, in this scenario, prior probability is equally divided amongst alternatives in
A,

Pr (q)

Pr (q̄)
=

Pr (q)

1− Pr (q)
=

1

|A|

1− 1

|A|

=

1

|A|
|A| − 1

|A|

=
1

|A| − 1
,

which, in combination with the laws of exponents, entails

Pr (q)
|W |

Pr (q̄)
|W | =

(
Pr (q)

Pr (q̄)

)|W |

=

(
1

|A| − 1

)|W |

= (|A| − 1)
−|W | . (37)

Multiplying the leftmost and rightmost parts of (37) by (|A| − 1)
∏

w∈W
Pr (t̄w)

yields

(|A| − 1)
Pr (q)

|W |

Pr (q̄)
|W |

∏
w∈W

Pr (t̄w) = (|A| − 1)
1−|W |

∏
w∈W

Pr (t̄w) (38)

and so by (35), (36), (38) and the transitive property of equality,∑
a∈A\{q}

∏
w∈W

Pr (t̄w) Pr (a)

Pr (q̄)
= (|A| − 1)

1−|W |
∏
w∈W

Pr (t̄w) . (39)

In (6), substituting the right-hand side of (39) for the left-hand side of (39) yields

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

∏
w∈W

Pr (tw)∏
w∈W

Pr (tw) + (|A| − 1)
1−|W |

∏
w∈W

Pr (t̄w)
.

�

Proof that (8) follows from (10) in Example 3. The example supposes that each of
W attest to q and

∧
w∈W

q ⊥⊥ tw. With assumption (10), the scenario meets the
antecedent conditions of Theorem 1. Since all witnesses attest to q, cqw can be
substituted for cT (w)

w in Theorem 1, yielding

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

Pr (q)
∏
w∈W

Pr (cqw|q)∑
a∈A

Pr (a)
∏
w∈W

Pr (cqw|a)
. (40)

Since A = {q, q̄}, the sum in (40) can be expanded and therefore

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

Pr (q)
∏
w∈W

Pr (cqw|q)

Pr (q)
∏
w∈W

Pr (cqw|q) + Pr (q̄)
∏
w∈W

Pr (cqw|q̄)
. (41)
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Table 1. Scenarios where one independence condition is met and
another is not.

#1 #2
Pr (qcqwc

q
xtwtx) 0.49 0.54

Pr (qcqw c̄
q
xtw t̄x) 0.15 0.18

Pr (qc̄qwc
q
xt̄wtx) 0.15 0.06

Pr (qc̄qw c̄
q
xt̄w t̄x) 0.01 0.02

Pr (q̄cqwc
q
xt̄w t̄x) 0.03 0.01

Pr (q̄cqw c̄
q
xt̄wtx) 0.01 0.01

Pr (q̄c̄qwc
q
xtw t̄x) 0.01 0.04

Pr (q̄c̄qw c̄
q
xtwtx) 0.15 0.14

Pr (q) 0.80 0.80
Pr (qcqw) 0.64 0.72
Pr (qcqx) 0.64 0.60
Pr (qcqwc

q
x) 0.49 0.54

Pr (tw) 0.80 0.90
Pr (tx) 0.80 0.75
Pr (twtx) 0.64 0.68
Pr (tw) Pr (tx) 0.64 · 0.64 0.90 · 0.75
Pr (q) Pr (tw) 0.80 · 0.80 0.80 · 0.90
Pr (q) Pr (tx) 0.80 · 0.80 0.80 · 0.75
Pr (cqw|q) Pr (cqx|q) 0.64

0.80 · 0.640.80
0.72
0.80 · 0.600.80

Pr (cqwc
q
x|q) 0.49

0.80
0.54
0.80

Since
∧

w∈W
q ⊥⊥ tw, the substitutions described in Theorem 5 and Theorem 7 are

allowable for (41) and therefore

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cqw

)
=

Pr (q)
∏
w∈W

Pr (tw)

Pr (q)
∏
w∈W

Pr (tw) + Pr (q̄)
∏
w∈W

Pr (t̄w)
.

�

Proof that (9) does not entail (10) and (10) does not entail (9). Consider scenarios
where there is a condition q and two witnesses w and x who must testify for or
against q. In these scenarios, A = {q, q̄} and W = {w, x}. If so, then there are
32 ways to combine the propositions q, cqw, cqx, tw, tx and their negations. Of these
combinations, 24 describe impossible scenarios such as qcqwc

q
xt̄wtx, where q is true

and w claims q but w does not tell the truth. Since they are impossible, their
probabilities are always 0. For the remaining 8 combinations, there exist nonzero
probabilities that add up to 1 while making condition (9) true and condition (10)
false. One such set of probabilities is shown in column #1 of Table 1. There also
exist nonzero probabilities that add up to 1 while making condition (10) true and
condition (9) false. One such set of probabilities is shown in column #2 of Table 1.

The first eight rows of Table 1 are probabilities of combinations of conditions.
The next seven rows of Table 1 are probabilities that can be calculated by summing
quantities in the first eight rows. The last five rows are the probabilities involved
in (9) and (10), which can be derived from the middle rows using (K4) and the
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definitions of conditional probability and independence, noting that, per (E1) and
(E2), qtw is equivalent to qcqw and qtx is equivalent to qcqx.

Since (9) can be true while (10) is false, (9) does not entail (10). Since (10) can
be true while (9) is false, (10) does not entail (9). �

Proof that (11) follows from (10) in Example 3 if Pr (q) = Pr (q̄). With assumption
(10), the scenario meets the antecedent conditions for Corollary 1. Applying Corol-
lary 1 to alternatives q and q̄ yields

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
q̄

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =

Pr (q)
∏
w∈W

Pr
(
cT (w)
w

∣∣q)
Pr (q̄)

∏
w∈W

Pr
(
cT (w)
w

∣∣q̄) . (42)

Since by hypothesis Pr (q) = Pr (q̄), these two terms cancel each other out, and

Pr (q)
∏
w∈W

Pr
(
cT (w)
w

∣∣q)
Pr (q̄)

∏
w∈W

Pr
(
cT (w)
w

∣∣q̄) =

∏
w∈W

Pr
(
cT (w)
w

∣∣q)∏
w∈W

Pr
(
cT (w)
w

∣∣q̄) . (43)

Let function T , in addition to mapping each witness in W to the alternative in A to
which the witness attested, also map each alternative in A to the set of witnesses in
W which attested to it. With T , the products on the right-hand side of (43) can be
split into two parts each, one for witnesses who claim q and another for witnesses
who claim q̄: ∏

w∈W

Pr
(
cT (w)
w

∣∣q)∏
w∈W

Pr
(
cT (w)
w

∣∣q̄) =

∏
w∈T (q)

Pr (cqw|q)
∏

w∈T (q̄)

Pr (cq̄w|q)∏
w∈T (q̄)

Pr (cq̄w|q̄)
∏

w∈T (q)

Pr (cqw|q̄)
. (44)

Since
∧

w∈W
q ⊥⊥ tw, the substitutions described in Theorem 5 and Theorem 7 are

allowable:∏
w∈T (q)

Pr (cqw|q)
∏

w∈T (q̄)

Pr (cq̄w|q)∏
w∈T (q̄)

Pr (cq̄w|q̄)
∏

w∈T (q)

Pr (cqw|q̄)
=

∏
w∈T (q)

Pr (tw)
∏

w∈T (q̄)

Pr (t̄w)∏
w∈T (q̄)

Pr (tw)
∏

w∈T (q)

Pr (t̄w)
. (45)

Since all witnesses are equally credible,∏
w∈T (q)

Pr (tw)
∏

w∈T (q̄)

Pr (t̄w)∏
w∈T (q̄)

Pr (tw)
∏

w∈T (q)

Pr (t̄w)
=

Pr (tw)
|T (q)|

Pr (t̄w)
|T (q̄)|

Pr (tw)
|T (q̄)|

Pr (t̄w)
|T (q)| . (46)

By the definitions of m and n given in the example,

Pr (tw)
|T (q)|

Pr (t̄w)
|T (q̄)|

Pr (tw)
|T (q̄)|

Pr (t̄w)
|T (q)| =

Pr (tw)
m
Pr (t̄w)

n

Pr (tw)
n
Pr (t̄w)

m . (47)
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By the definition of complement,
Pr (tw)

m
Pr (t̄w)

n

Pr (tw)
n
Pr (t̄w)

m =
Pr (tw)

m
(1− Pr (t̄w))

n

Pr (tw)
n
(1− Pr (t̄w))

m . (48)

Therefore, by (42), (43), (44), (45), (46), (47), (48), the transitive property of
equality and the laws of exponents,

Pr

(
q

∣∣∣∣∣ ∧
w∈W

cT (w)
w

)

Pr

(
q̄

∣∣∣∣∣ ∧
w∈W

cT (w)
w

) =
Pr (tw)

m
(1− Pr (tw))

n

Pr (tw)
n
(1− Pr (tw))

m =
Pr (tw)

m−n

(1− Pr (tw))
m−n .

�
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